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1.0 INTRODUCTION

-The development of a thin-wire frequency-domain (TWFD) method of

moments code was discussed in a previous report [1]. Since that time

this code has undergone further development and numerical testing. The

purpose of the code is to provide a theoretical and numerical basis to

aid in understanding the resonance region electromagnetic scattering

from thin-wire stick models. This frequency domain code augments a

time-domain code (TWTD) which calculates the scattered transient

response for an impulsive incident field. The outputs from both of

these codes have provided numerical predictions which have been indis-

r pensible in assessing our ability to extract resonance information fromCL

actual scattering range data. . .

The Laplace transform H(s,Q) of a target's impulse response can be

I expressed as [21 -

• . -A, i + W(s,f) . (1)Is i-I 'S

The directions and polarizations of the incident and scattered fields

are collectively denoted by 9 in the above. The Fourier transform

H(w,Q) of the impulse response is simply H(s,g) evaluated along the jw

axis. The summation on the right side of equation (1) includes all

resonance modes which contribute significantly to the sattering. The

pole positions si are independent of Q whereas the corresponding

"* residues Ai dependent on 0. The entire function portion, W(s,Q), of the

- response contains valuable non-resonance information about the target.

For a specified stick model the TWFD code has been designed to

perform the following basic functions:

L-
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1) Locate the positions si of the resonance poles.wi

2) Calculate the corresponding residues Ai for the specified

values of 0.

3) Directly calculate the transfer function h(w,Q) for specified

values of S.

These capabilities allow us to do a variety of numerical experi-

ments which can be compared with TWTD [3] numerical experiments as well

as with the results of analyzing physical measurements. Each of these

capabilities will be discussed in this report. Following that we will

show the results of some numerical experiments which were performed

using TWFD on a particular thin-wire model. These then are compared

with results using TWTD as well as with physical measurements made with

the same model.

L
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2.0 SUMMARY OF TWFD CODE

* The TWFD code solves for the cw scattering by using the method of

" moments. This section will summarize the formulation TWFD uses to solve

the frequency domain problem. Reference [1) provides most of the

details. The following three sections will concentrate on the primary

capabilities we have built into the code since that report.

The sca'ttered cw field can be obtained by applying a Green's

function to the surface current response of the scatterer. For thin

aire models the surface current can be assumed to flow solely in the

direction of the axis of each wire segment. Furthermore, certain

r approximations can be made which reduce the Green's function integral to

a one-dimensional integral along the axes of the wire segments compris-

*i ing the model.

K An equation for the current response can be obtained by applying

the surface boundary conditions. The most important of these is that:

(1) the tangential component of the sum of the scattered and

* • incident fields at the surface is linearly proportional to the

local surface current.

S.-For perfect conductors the proportionality constant is zero and conse-

quently, the tangential component of the total E-field is zero at the

surface. Condition (1) reduces the Green's function integral to an

integral equation which relates the induced surface current distribution
-  to the known tangential component of the incident E-field at each point

on the surface.

" The integral equation can be solved by using the method of

moments. This consists of introducing a set of linearly independent

basis functions. The TWFD code uses a set of overlapping triangle

3
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functions as discussed in detail in reference [1]. The unknown current - 4
I(;) can be expressed as a linear combination of the basis functions

T i , e.g.,

MI(W I u i Ti(M (2)

i-I

(here 4 is a parameter which specifies position along the wire seg-

ments). In practice the number of bases, M, is finite and not complete.

Thus, at best the sum in equation (2) provides an approximation to the

actual current. Taking the scalar product of each basis with the

tangential component of the incident E-field reduces the integral

equation to a matrix equation,

v -Z I (3)

where V is an H x I vector whose components are these scalar products, I

is an H vector whose components are the unknowns ui, and Z is the H x H

impedance matrix. .1 -

There are additional boundary conditions which must also be

satisfied. These are:

(2) the current at free segment ends must be zero,

(3) the net current flowing into any junction must be zero,

and

(4) the charge density (dI/d4) for all segments meeting at a

junction must converge to the same limit at the junction.

4
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[ These conditions introduce additional linear constaints on the coeffi-

cients ui which reduce the number of independent variables. This

- requires the reduction of equation (3) to an M' dimensional matrix

equation where M'< M. The details of this reduction are discussed in

* reference [1]. In this reduced representation the ui are linear

combinations of the indepenent components of the unknown vector I', viz,

I -B I" (4)

where B is an M x M' matrix which contains the boundary conditions. The

vector V" and the M' x M' reduced impedance matrix Z' can be evaluated

directly. The surface response can thus be obtained for a given

frequency by finding (Z')-, forming

I" = (z')-tv" , (5)

I and then making use of equation (4).

The scattered cw field can be obtained by integrating the Green's

function with the surface current response. Using equation (2) it is

I? straight forward to show that this incegral reduces to a vector product,

viz,

1 (w,Q) G-I (6)

A

* where G is a 1 x M row vector whose components are the scalar products

of the Green's function and the basis functions. By forming

G' G B (7)

it follows that

- H (,aj) - G' (Z')- V" (8)

5



Equation (8) is the solution of the cw scattering problem. If

wire segments have non-zero diameters, the matrix Z' will be non-

singular and, hence, invertible for all real w.

It is important to note where the 9 dependence is in equation (

The vector V depends on the incident propagation direction and polar

zation. The vector G' depends on the position of the observation poi

as well as the observed polarization. The impedance matrix depends

neither on the polarizatons nor the directions of the incident and

observed fields. It strictly depends on the scattering system itself

However, all three factors on the right side of equation (8) depend o

the frequency.

We can make use of analytic continuation to extend equation (8)

the w-plane. The singularity expansion method (SEM) [4] says that we

can do this except at certain discrete singularities. It has been sh

that

H(WQ) -j + W(wf) (9)w- W
i

Equation (9) is equation (1) rewritten using the transformation s=jw.

The TWFD code converts the s-plane representation to the equivalent

( -plane representation when doing the calculations.

The singularities are due to the impedance matrix. Both G' and

are analytic everywhere. It follows that the singular points w are

roots of det(Z'). The primary function of TWFD is to find these root

which are the resonance poles. The method of moments approach shows

very clearly that these poles are independent of incident and scatte

aspects and polarizations.

6.. . . . . .



The TWFD is also capable of calculating At(9) and H(w,g) for any

combination of the variables Q. Indeed, parametric studies of Q can be

done quite readily by recognizing that its dependencies are contained

within G' and V which are easily calculated. This will be discussed

more thoroughly in the following sections.

I

-°, ,-

'o

I
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3.0 LOCATING THE RESONANCE POLES

The primary function of TWFD is to predict the positions of

resonance poles. This is accomplished by finding the zeros of

D(w) - det(Z'(w)). We initially used a technique which applied contour

integration to the evaluation of the zeros. This was mentioned in

Reference [i]. Unfortunately, this approach required that D(w) be

evaluated at an unacceptably large number of points. The time require-

ments were prohibitive. We then resorted to using a steepest descent

approach. This has proven to give good results and decreased the

calculation time by almost two orders of magnitude. The only concern

with using steepest descent is the possibility of missing a pole.

However, our numerical tests have shown this fear to be unwarranted,

especially since the TWTD code provides an independent means of checking

the TWFD results.

The steepest descent technique converges to a zero of D(w)

starting from an initial guess. This is done as foliows. At some

initial guess w a "shooting vector" Aw is calculated which leads to a
0 0

new guess wI - w + Aw . At wI a "shooting vector" A I is calculated0 0 1 1 -

which leads to another guess. The sequence of guesses converges to a

zero. The sequence IAwnI converges monotonically to zero. The position

of a pole is sufficiently approximated as wn when JAWn_ j < c where c is
n-

some small preselected positive number. In practice a half dozen or

fewer iterations of this process is usually sufficient. The number n

depends on how close the initial guess is to an actual pole.

The basis of the technique is to produce an appropriate "shooting

vector" A n at each successive guess w. This is done by forming

A(wn) ID(w )I2 and grad(A(wn)). By using the Cauchy-Rieman conditions * '-.

it is possible to obtain A and its gradient by calculating D at wn and

+ Ax where Ax is a real-valued differential step. The direction of

8
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the"shooting vector" is that of gradA(wn) and its magnitude is 0

IA(wn)I/Igrad(A(wn))I. The code includes another factor which helps

speed up the convergence if the initial guess is not close to a pole.

However, the technique used is essentially that described.

The frequency plane is generally normalized so that for the lowest

order poles Re(w) 2 1. Using e = .001 we have found that convergence is

often achieved with 2 or 3 iterations and almost always within 5 or 6.

Since D has to be calculated at two points for each "shooting vector",

it follows that for each pole prediction D(w) must be calculated at

about 4 to 10 points.

Convergence is not always achieved. The criterion we chose for

non-convergence is two successively increasing values of lawn1. Our ,

experience with running TWFD has shown that as we increase the order of . "

the pole being sought, non-convergence becomes a problem. The reason

for this is that the finite basis set cannot be adequately used to

represent the higher modes. If we significantly increase the number of

bases, more higher order poles can be found. However, for any particu-

lar basis set, we find that there is a maximum pole order to which we

can converge. In short the cost per pole increases dramatically with

increasing pole frequency. In practice the maximum frequency of

interest can be obtained by knowing the spectral response of the

transmit/receive system in which we are interested.

9
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4.0. CALCULATING THE RESIDUES

The calculation of the residues AI(a) (see equations (1) and (9))

is another capability we have built into TWFD. Most particularly we are

interested in how they depend on the directions and polarizations -y

(denoted by 1) of the incident and detected fields. Using the technique

outlined in this subsection, parametric studies of this kind can be

carried out readily and quite efficiently.

The formulation of the technique can be seen by combining equa-

tions (8) and (9). From these we have that

Ai(9) = JG'(wi) A' V'(wi) (10)

where A' lim (w-wi) (Z'(wi)f- (11)

In equation (10) we have used the fact that G' and V' are analytic

everywhere. All the 9 dependence is contained in these two vectors

which are easily calculated. The matrix A' associated with each w is

independent of Q. Almost all the computational effort in calculating

Awe(9) is in calculating A. Thus, what we do is to obtain A' once, when

we locate i, then store it for later use in doing parametric studies of

A i(al)

The validity of this technique depends on the reliability with

which we can numerically form the limit in equation (II). There are

various ways of doing this. We have chosen the most straightfoward

approach and have found that it gives good results. The approach is as

follows. Let a' and z' be corresponding components of A' and
in .

• - , respectively. If j~n I < c, we assume
n n-i

10
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& - °12a)
ai (n-i La) z'1

a; = (W - W )z' (12b)
I n i n

where wi is the actual pole which wn-1 and wn approximate. The unknown

W i can be eliminated to obtain

, AW z(

ai _ n-I n-I (13)
(z_ /z' )-i

The value of ai obtained from equation (13) is actually an approx-

imation which depends on the convergence criterion c. Our initial

numerical tests showed that a was weakly dependent on e in the region

of the values which we typically use for this parameter (.01-.0001).

a This indicated that equation (13) provided a good approximation of ai.
As e was given smaller values, random variations in a' began to occur

*'. -. because of the inherent numerical inaccuracies of the computer. More

- "extensive tests revealed that there are some poles for which the

technique described in equations 12 and 13 does not give an adequate

convergence of the limiting process of equation (II). This is discussed

in section 6.3. At this point it is not clear to us why the technique

. should work well for some poles and not work for others. We intend to

resolve this problem in a future study.

r-
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5.0 PREDICT THE IMPULSE RESPONSE

The impulse response can be obtained by applying equation (8) to

points on the real-w axis. In practice we perform this calculation at a

discrete and finite set {w -,M} of such points. A DFT applied to -V

this set then provides a prediction of the impulse response for a

discrete set {tmlm-1,M} of sampled points in the time domain.

It is desirable that the time t1 correspond to the initial

reception of the scattered signal at the receiver. The impulse response

obtained from equation (8) will be referenced to the time at which the

incident impulse crosses the origin of the coordinate system. Let t' be

the time referenced to this latter event. Let t be the time referenced

to the initial reception of the response. It is necessary to determine

T so that t' and T + t correspond to simultaneous points in time. The

desired transfer function then becomes

H1-w.g) e H(Ws.), (14)

and the corresponding impulse response will be referenced to time t with

tO corresponding to the first sample point t.

For the far-field response T can be determined quite readily. Let

T- T- 0 AT (15)

Where To corresponds to the time it takes for a signal to travel

from the origin to the observation point. In the calculations the

origin is always chosen as a point on the target. Because of the

target's finite size it is possible for scattering from some of its

points to reach the receiver before the initial reception of scattering

from the origin. The time T accounts for this effect. Figure 1

illustrates the difference between the times T and T.
0

12
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* S o

h(t)

I' 1 I p

t=r 0  '

Figure 1 Far Field Impulse Response, h(t), of a target. The original

of the coordinate system is chosen as a point on the target. S
The time T is the earliest that scattering from the origin

can reach the receiver. Because the target has a finite size

". the initial reception of target scattering can occur at some

. time T < To.

13
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The time To is readily determined from the distance between the

observation point and the origin. It turns out that the factor e o

appears explicitly in G' of equation (8). Thus, by simply omitting it

in the calculation, the translation to time T is made. Doing this it
0

follows that

H1(W,Q) - eJ T H(w,1) . (16)

Equation (A.1) is the explicit form of H(w,O) for a thin

wire scatterer. The time AT is determined from the unit directional

vectors a and & which point, respectively, from the origin to the

transmitter and receiver. Let r represent the position of any point on

the scatterer relative to the origin. It is easy to show that

,,M - r(n ) (17) - ---.17

c

The receiver will act as a filter on the signal. This can be

represented by some transfer function F(w) which can be included in the

calculations. A prediction of the measured transient response is then

obtained by applying a DFT to

H2 (wf) - F(w)H 1 (W',S) (18)

The function F(w) provides a natural cutoff for the maximum frequency

needed.

14
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6.0 NUMERICAL RESULTS AND VALIDATION

This section presents the results of the TWFD validation study.

In all cases TWFD numerical results were validated with TWTD numerical

data or experimental measurements or both. All of the aspects of TWFD

were studied and tested. These studies include:

1. Pole estimated from zeros of impedance matrix

(Section 6.1)

2. Prediction of scattering cross section and impulse

response (Section 6.2)

3. Production of scattered field polar residue patterns

(Section 6.3)

The results for studies 1 and 2 validate TWFD quite well. The

results for study 3 pointed out a numerical convergence problem when we

attempted to perform the limiting process of equation (11).

Two canonical (analytically predictable) stick aircraft were

modeled using TWFD for the series of validation tests. These models are

shown schematically in Figure 2. The two targets were chosen so that

both TWFD and TWTD could be used and so that the experimental targets

could be constructed easily in varying scales. The modified stick model

differs from the standard stick only in the location of the horizontal

stabilizer. The choice of the simple target shapes allows for a first

order correlation of the resonances with the target configuration.

This section only displays the results of the validation tests.

These data presented here along with more extensive results were used in

a companion OUR study investigating the use of resonance extraction for

target identification and characterization. That study is summarized in

a three-volume final report [5].

15
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[ 6.1 POLE ESTIMATES

An initial check on the resonances produced using TWFD was in fact

a self check. GRC's Prony's method algorithm [1,5] was applied to the

scattered fields produced by TWFD. The resulting extracted poles are

compared to the poles obtained from zeros of the determinant of the TWFD

impedance matrix in Table 1. As would be expected, the poles produced

by the two mechanisms are very close. Table 1 also shows the aspect

angle independence of the resonances of the two stick models.

In order to properly validate the poles produced from the TWFD

impedance matrix, resonances were extracted from measured fields. These

fields were measured in a cw scattering chamber (described in detail in

reference [5].) Tables 2 and 3 compare the extracted poles at each of

the nine scattering angles with the theoretically produced TWFD poles.

Figures 3 and 4 plot the poles of Tables 2 and 3 respectively in the

j complex s plane. These figures graphically show the clustering of the

poles as a function of angle and any deviation of the cluster mean from

the theoretically predicted value.

The results of these pole extraction studies convinced us that the

code was working within numerical expectations. Hence TWFD can be used

as an independent validation tool for resonance extraction tests.

6.2 SCATTERED FIELDS

The scattered fields predicted by TWFD for the two canonical

m targets were compared to three other data sources in both the time and

frequency domain. The TWTD numerical model was used to produce smoothed

impulse responses directly in the time domain. Spectral data was

obtained by performing a FFT on the data. The scattering spectrum was

0 measured directly in the frequency domain using a cw measurement system

17.
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Figure 3 Overlays of poles estimated from cw measured responses (Table 2)

at all orientations for standard stick model. The theoretical

values are shown with the large +.
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Figure 4 Overlays of poles estimated from cw measured responses (Table 3)
at all orientations for the modified stick model to the TWFD
p'zoduced theoretical poles shown with a large +
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Table I Comparison of poles estimated by applying Prony's method t
noise-free numerical responses to theoretical values obtai
from zeros of the TWFD impedance matrix determinant for th
standard and modified stick models.

STANDARD STICK MODIFIED STICK

ANGLE(DEG) POLE I POLE 2 POLE 3 POLE 4 POLE I POLE 2 POLE 3 POLE

O. ---- -0.110 ----. .... .... .0.106 -----

30. -0.047 -0.111 -0.083 -0.084 -0.039 -0.106 -0.080 -0.0(
45. -0.047 -0.110 -0.083 -0.087 -0.039 -0.105 -0.080 -0.0(
60. -0.047 -0.110 -0.083 -0.087 -0.039 -0.106 -0.080 -0.0(
90. -0.047 -... 0.083 -0.087 -0.039 - 0.080 -0.0(
120. -0.047 -0.110 -0.083 -0.087 -0.039 -0.106 -0.080 -0.0(
135. -0.047 -0.110 -0.083 -0.087 -0.039 -0.106 -0.080 -0.0(
150. -0.047 -0.110 -0.083 -0.087 -0.039 -0.106 -0.080 -0.0(
180. --- -0.110 --- 0.106 ----

MEAN: -0.047 -0.110 -0.083 -0.086 -0.039 -0.106 -0.080 -0.0(

THEORETICAL: -0.044 -0.106 -0.085 -0.084 -0.037 -0.103 -0.076 -0.0(

0. ---- 0.889 --- 0.888 .... ....
30. 0.705 0.888 1.261 1.627 0.583 0.888 1.264 1.62,
45. 0.706 0.889 1.262 1.627 0.583 0.888 1.264 1.62:
60. 0.706 0.889 1.262 1.627 0.583 0.887 1.264 1.62:
90. 0.706 ---- 1.261 1.627 0.583 ---- 1.264 1.62:
120. 0.706 0.889 1.261 1.627 0.583 0.888 1.264 1.62:
135. 0.706 0.889 1.262 1.627 0.583 0.888 1.264 1.62:
150. 0.706 0.889 1.261 1.627 0.583 0.887 1.264 1.62:
180. --- 0.889 0.888 -----

MEAN: 0.706 0.889 1.261 1.627 0.583 0.888 1.264 1.62

THEORETICAL: 0.707 0.896 1.266 1.631 0.583 0.893 1.270 1.62
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Table 2 Theoretical poles from TWFD compared to the poles estimated

from cw measurements at each orientation, their means and

standard deviations (error radii) for the standard model). -

S 0
REAL PART IMAGINARY PART

ANGLE(DEG) POLE 1 POLE 2 POLE 3 POLE 4 POLE I POLE 2 POLE 3 POLE 4

0. -- -0.128 .. 0.875 ----

30. -0.032 -0.104 -0.078 0.714 0.888 1.244

45. -0.047 -0.129 -0.084 -0.082 0.708 0.908 1.235 1.602
60. -0.050 -0.134 -0.134 -0.085 0.702 0.852 1.240 1.588 6
90. -0.046 -0.085 -0.079 0.702 ---- 1.238 1.578

120. -0.039 -0.083 -0.091 0.704 --- 1.247 1.596
135. -0.032 -0.138 .... -0.084 0.696 0.918 ---- 1.595

150. -0.036 -0.124 .... 0.696 0.884
180. -- -.0.122 ---- .... 0.882 ....

MEAN: -0.040 -0.126 -0.082 -0.084 0.703 0.887 1.241 1.592

THEORETICAL: -0.044 -0.106 -0.085 -0.084 0.707 0.896 1.266 1.631

STANDARD DEVIATION 0.010 0.024 0.006 0.010

Table 3 Theoretical poles from TWFD compared to the poles estimated

from cw measurements at each orientation, their means and

standard deviations (error radii) for the standard model.

REAL PART IMAGINARY PART

ANGLE(DEG) POLE I POLE 2 POLE 3 POLE 4 POLE I POLE 2 POLE 3 POLE 4

0. - -0.117 ---- 0.029 ---- 0.872 --- 1.623

30. -0.037 -0.126 -0.091 -0.068 0.567 0.873 1.228 1.632

45. -0.040 -0.122 -0.084 -0.060 0.569 0.878 1.224 1.618 0
60. -0.040 -0.105 -0.080 -0.067 0.568 0.880 1.229 1.603

90. -0.039 -0.093 -.078 ---- 0.569 0.864 1.230 -
120. -0.040 -0.113 -0.079 -0.049 0.568 0.858 1.228 1.614
135. -0.040 -0.115 -0.083 -0.065 0.567 0.867 1.232 1.606
150. -- -0.120 -0.086 -0.064 -- 0.877 1.228 1.599
180. ---- -0.122 - - 0.880 ... ....

MEAN: -0.039 -0.115 -0.083 -0.057 0.568 0.872 1.228 1.614

THEORETICAL: -0.037 -0.103 -0.076 -0.066 0.583 0.893 1.270 1.621

STANDARD DEVIATION 0.001 0.013 0.005 0.019

21 0
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[5]. The impulse response was measured directly in the time domain

using a transient scatterig facility [51. Impulse response and spectral

data were obtained from the measured cw and time domain data respec-

tively by using a Fourier transform.

Table 4 is a guide to the TWFD comparisons (Figures 5-15) with the

data produced by the three other data sources. All plots showing TWFD

smoothed impulse response data are a result of Fourier transforming the

spectral data.

A study of Figures 5-15 shows that TWFD data is validated extreme-

ly well by the cw measured data. There are minor discrepancies between

TWFD and TWTD and between TWFD and the measured time-domain data. In

both of these cases the discrepancies can be accounted for my numerical

deficiencies n TWTD or noiae in the transiet measurements respectively.

6.3 RESIDUE PLOTS

Section 4.0 describes the numerical process used for calculating

the angular dependence of the residues associated with each resonance.

Figure 16 displays the polar residue magnitude radiation pattern for the

first four resonances for the two canonical targets. Figure 17 displays

the polar residue plots obtained by applying Prony's method to the TWFD

scattered fields at nine discrete angles. By comparing Figures 16 and

17 it is clear that the record residues for each canonical shape do not

compare. While the polar plots of Figure 17 are coarse they are felt to

be the more accurate. Hence, at the second mode the residue calculation

as described in Section 4.0 does not work.

Numerical studies showed that the limiting process does not

converge for this particular mode. This may be due to the fact that the

second mode is very low Q. At present two methods are available to

22



correct this problem. However since the production of polar residue

plots was not a requirement for TWFD under this work we elected to post-

pone correcting the residue calculations.
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Figure 7 Comparison of monostatic smoothed impulse response (A), and
spectrum (B) of standard stick model at 90* produced by TWTD
and TWFD numerical models.
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" ~Figure 8 Comparison of TWFD fields to cw measured data at 0* for smoothed , :
~impulse response (A) and spectrum (B).
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Figure 9 Comparison of TWFD fields to cw measured data at: 450 for-" ''"

smoothed impulse response (A), and spectrum (B).
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Figure 10 Comparison of TWFD fields to cw measured data at 900 for

smoothed impulse response (A) and spectrum (B).
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Figure 11 Comparison of TWFD fields to cw measured data at 180' for

smoothed impulse response (A) and spectrum (B).
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Figure 12 Comparison of TWFD fields to time-domain measured data at

3. 00 for smoothed impulse response (A) and spectrum (B).
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Figure 14 Comparison of TWFD fields to time-domain measured data at
900 for smoothed impulse response (A) and spectrum (B).
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Figure 15 Comparison of TWFD fields to time-domain measured data at
90* for smoothed impulse response (A) and spectrum (B).
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0

URESIDUE RESIDUE 3 0
S= 0.044 + 0.707 S= 0.085 +j 1.266

Ob

RESIDUE 2
S -0.106+ j 0.896 RESIDUE 4

S~ 0.084 + 1.631

(A)

RESIDUE 1

5 0.37 i 05a3RESIDUE 3
S= 0.076 +j 1.270

* RESIDUE 2
S=-0.103 + j0.893

RESIDUE 4
S= 0.066 + 1.621

Figure 16 Polar residue magnitude radiation patterns for (A) standard,
and (B) modified models. The residues were obtained directly
from TWFD as described in the text. It can be shown, by
comparison with Figure 17, that due to convergence problems

* the residues of pole 2 are in error. I
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*Figure 17 Polar residue magnitude radiation patterns for (A) standard
and (B) modified models. The dots indicate the angles at

* -which the residues were extracted. The curves are manually
interpolated from residues extracted from TWFD RCS data by
using Prony's method.
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-. Table 4 Guide to the TWFD data comparisons with data produced
by three other methods. The Numbers refer to figures

* in the text.

MEASURED MEASURED
TWPD TWTD CW TIME-DOMAIN

ANGLE IMPULSE SPECTRUM IMPULSE SPECTRUM IMPULSE SPECTRUM

0 5A 5B 8A 8B 12A 12B

45 6A 6B 9A 9B 13A 13B

- ~ 90 7A 7B 10A 10B 14A 14B

180 11A 11B 15A 15B
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APPENDIX

This appendix summarizes the details of the calculations repre-

sented by equations (8), and (10). The matrices (Z'(w))- ' and A i are

obtained from the reduced impedance matrix the details of which are

described in reference [1].

For electromagnetic scattering from a thin wire structure, the

far-field transfer function (normalized to a one meter distance) can be

written as:

H(w,fQ) -- j Z k II (x,cw,Q) (t(x")*e) exp(ik !!x}d; (A.1)
0 ......[ L

. where k =
p c

L length scale factor

Z - free space impedance
0

-.x = position of a point on scatterer

£ unit directional vector of wire segment

" = observed polarization

.I stationary current along wire

n - receiver direction

- displacement along a wire segment
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Using equation (2) 4i

M

H(w,Q) =-JZ k u1 R (A.2)

where

jk pn~x
L d

R - fiP T1e L (A.3)= %" I .I .i~i(O

In equation (A.3) 1, is the unit vector of the segment on which Ti W4.

is defined. The position x can be explicitly written as -"

x i + i (A.4)

where x i is the position of the beginning end of the segment. Using -

(A.4) and the basis set of reference [1], the integral in (A.3) can be

performed explicitly to obtain

R,- ( iL)exp( , n.(xi+ C, )) Fi A.5)

The factor Fi takes on one of three values depending on whether i is (a)

the beginning point of a segment, (b) not a segment end-point, or (c)

the termination point of a segment. The values of F1 for these three

cases are, respectively:

- -  + f ()/A (A.6a)
+ i

F, (f+(a) + f_(a))/A i  (A.6b)

- 1 + f (a)/Ai (A.6c)
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-r . • .

where f (a) = (el- 1),ci2 (A.7a)

f (a) - (e l)a2 (A.7b)

a - jk n-1 (A.7c)
p

i  i/L (A.7d)

and Ai is half the basis width. Comparing (A.2) with (6) we can make

the identification

Gi - -JZokpRi (A.8)

In accordance with the reduction discussed in reference [1], the

vector components G i" can be formed as follows.

G' 0 (A.9a) '.

for end points,

Gi G C (A.9b)

for points not adjacent to end points, and

Gi G i + J(; (A.9c)

for points adjacent to endpoints. The sum in equation (A.9c) is over

all points meeting at the same junction which is adjacent to i. These

points (') are endpoints of all segments meeting at the particular
junction. The factor e£i is

41
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I

£= (-1) L£ (-1) + 6 Li(A9)..-.:
+6 (A. 9d)

where A is the sum over the A., of all segments meeting at the junction

and

1 if adjacent point a beginning point

i = 2 if adjacent point a termination point

In practice the G corresponding to endpoints are eliminated since
i

the corresponding rows and columns of Z' are eliminated (see reference[1]). .i .ii:

Again referring to (1I the components of V" can be written as

V2 -irk f S T E (A.10)
L 21i inc

0
0

where E is the incident stationary plane wave with wavenumber k /L,
inc p

viz.,

k m*x
+ P
Ei E° e L (A.11)

The magnitude of E is chosen as unity. For very thin wires variations

of En in the angular integral are negligible and, thus,
inc

k ,ir.(k

OO-- p(,E. )+ t)Q (A.12a)
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*whereQ ( f ()() + f(-) ()) /a i (A. Jib)

*and =j kpm.L . (A.12c)

Once the reduced impedance matrix is obtained for some w, it can

be inverted. The vectors G' and V can then be calculated as described.

The multiplications of equation (8) or (10) can then be performed.
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